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Debye-Waller Coefficient of KCI by the Powder Neutron Diffraction Method 
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The neutron diffraction pattern of powdered KC1 has been measured using the triple-axis spectrometer 
both in the double-axis and the triple-axis modes. The thermal diffuse scattering (TDS) correction, which 
is very important in the double-axis pattern, is essentially eliminated in the triple-axis mode. Theoretical 
calculations are presented which give the relative TDS correction for the two cases by calculating the 
energy distribution of TDS. The Debye-Waller coefficient B using the triple-axis data is found to be 
(2.17 + 0" 16 A2), which is in agreement with the TDS-corrected values of other workers. 

1. Introduction 

The Debye-Waller coefficient B for KC1 has been ob- 
tained by many workers using X-ray diffraction (James 
& Brindley, 1928; Patomaki & Linkoaho, 1968; Jaya- 
lakshmi & Viswamitra, 1970), M6ssbauer ~,-ray dif- 
fraction (Butt & O'Connor, 1967) and neutron dif- 
fraction techniques (Cooper & Rouse, 1973). The B 
values have also been calculated theoretically from 
various lattice-dynamical models (Copley, Macpherson 
& Timusk, 1969; Reid & Smith, 1970; Groenewegen 
& Huiszoon, 1972). 

The experimental B values reported since 1967 (Butt 
& O'Connor) are in general agreement with one an- 
other. However, the theoretical values are smaller than 
the experimental values. In the X-ray and neutron 
diffraction methods, the coefficient B is evaluated from 
the angular dependence of the intensity of Bragg re- 
flexions. The intensities of the diffraction peaks are 
not purely due to elastic scattering and contain the 
thermal diffuse scattering (TDS). The observed Bragg 
intensities are corrected for the TDS evaluated theore- 
tically or experimentally. The corrected intensities are 
then used to obtain the coefficient B. 

In the case of X-ray and double-axis neutron dif- 
fraction from single crystals the TDS originates from 
phonons of very small energies, from a small volume 
around the reciprocal-lattice point defined by the ex- 
perimental collimation (Nilsson, 1957; Willis, 1969). 
For single crystals the TDS can however be eliminated 
experimentally by the M6ssbauer technique. Theore- 
tical calculations have been performed which show 
that the TDS in powder samples has a large contri- 
bution from phonons of energies greater than the ener- 
gy resolution of the triple-axis neutron spectrometer. 
Hence this technique has been used to reduce the TDS 
~onsiderably, and to determine the B values accurately. 

* Permanent Address: AB Atomenergi, Studsvik, Sweden. 

2. Experimental procedure 

The triple-axis neutron spectrometer TKSN-400 at the 
PINSTECH 5 MW research reactor was used to meas- 
ure the double-axis and the triple-axis powder dif- 
fraction patterns. KCI powder (AnalaR grade) was 
packed in a moisture-tight rectangular container of 
size 11× 5 ×0.5 cm with thin aluminum walls. The 
sample thickness corresponded to a 76 % neutron trans- 
mission at the wavelength 1.18 A, used in the experi- 
ment. Zn (0002) single crystals were used as monochro- 
mator and analyzer. The Soller collimators used before 
and after the sample were 20' and 30' respectively. 

The observed integrated intensity Phkz for the Bragg 
peak hkl is given by (Bacon, 1962) 

Phk,=A . Cnkt exp ( - 2 B  sin2 0/22) (2.1) 

where A is a constant for the apparatus, 

exp ( - p t  sec 0) j~,k,F2k,, 
c ~ , -  L(0) 

Jhkz the multiplicity of the planes of reflexion, Fhkz the 
structure factor, 0 the Bragg angle, p the linear ab- 
sorption coefficient of the sample, t the thickness of 
the sample and L(O) the Lorentz factor, which for a 
slab sample is 1/sin 2 20. 

The integrated intensities Pa~z of the diffraction peaks 
were measured by planimetry by taking the area above 
the background defined by the wings of the peaks. The 
quantities C~kz were calculated theoretically for each 
peak, and the coefficient B was found from equation 
(2.1). A computer program was written for the cal- 
culation of C~k~ and for the evaluation of B along with 
the error on it. The neutron scattering amplitudes used 
for K and CI were 0.369 × 10 -12 and 0.958 × 10 -12 cm 
respectively (Willis, 1973). All measurements were made 
at room temperature. 
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3. T D S  C a l c u l a t i o n s  

The thermal diffuse scattering (TDS) originates from 
phonon coherent scattering. In the case of neutrons 
the one-phonon processes are most important and are 
governed by the following wave vector and energy 
conditions: 

K~ - K2 = x + q (3 .1)  

h2K~ h2K22 
- + hco(q). (3.2) 

2m 2m 

v / /  'k~2SCATTERING 

Fig. 1. Scattering surfaces for powder sample. These are gen- 
erated when the configuration K1, K2 is rotated in reciprocal 
space keeping 20 fixed. A and A' show two positions of Kt 
during rotation. The wave vector K2 intersects the scattering 
surfaces at a, b and c, d in the two cases. The distance of 
these points from the reciprocal point P gives the q value 
of the phonons involved in the scattering process. 
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Fig. 2. Energy distribution of thermal diffuse scattering for the 
Bragg peak 420. The contribution from energy gain and 
energy loss processes are added together. Curves (a), (b) 
and (c) give the energy distribution at three different angular 
positions (within the Bragg peak) at a distance 8, 36 and 
60 away from the Bragg angle. 6 is 1/20th of the full base 
width of the peak. 

K~ and K 2 are the wave vectors of the incoming and 
outgoing neutrons respectively, ~ a reciprocal-lattice 
vector, m the neutron mass, q the wave vector and 
o)(q) the frequency of the phonon taking part in the 
scattering. 

The scattering surfaces for TDS in the single crystal 
case were first given by Seeger & Teller (1942). They 
showed that by varying the scattering angle the solu- 
tions to equations (3.1) and (3.2) could be represented 
by a quadratic surface in reciprocal space under the 
assumption that co(q)=cq and q<~r where c is an 
effective velocity of sound. This limits the validity of 
the treatment to a small region around the reciprocal- 
lattice point. The scattering surface is a hyperboloid if 
K~ < elm and an ellipsoid if K~ > c/m, the axis of 
symmetry being the wave vector K2 at the Bragg angle 
(Willis, 1969). 

To obtain the TDS for a powder sample, which 
contains a large number of crystallites with random 
orientation, we have to take an average over all direc- 
tions. This can be done by rotating the reciprocal lat- 
tice in the scattering diagram such that each point 
generates a spherical surface or, alternatively, by keep- 
ing the reciprocal lattice fixed and rotating K~ and 
K2, with a constant scattering angle. The latter picture 
is illustrated in Fig. 1. Using the same assumptions as 
Seeger & Teller the solution to equations (3.1) and 
(3.2) generates the following scattering surface for the 
powder case (Appendix) 

( l - d )  ( A ) z A z 
d z . . . . . . . . . . . . . . . .  1 - d  rZ . . . . . . . . .  1 - d  0 (3.3) 

where z and r are cylindrical coordinates with z in the 
direction of z and 

11.1272C 2 
d= 4h2K 4 

A = 2Kt sin 0 -  r .  

For d>  1 equation (3.3) represents an ellipsoid and 
for d<  1 a hyperboloid. 

The scattering surface for the case d<  1 is shown in 
Fig. 1. In both cases • is a symmetry axis and the sym- 
metry centre is A/(I-d) away from the reciprocal- 
lattice point. For the ellipsoid case the reciprocal-lattice 
point is within the ellipsoid and for the hyperboloid 
case the two branches are on the same side of the lattice 
point. 

To obtain a value for the parameter e which is an 
effective sound velocity of the material, we used the 
s u m  

a c°s2 eJ(q) (3.4) s =2; 
j = l  J 

where cg(q) is the angle between a fixed direction and the 
polarization of mode (q,j), Vq.~ the corresponding 
sound velocity and Q the density. Nilsson (1957) has 
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shown that in the isotropic approximation a value of 
Sq is obtained by 

where 

S =  ½ -}bl(cxt + c12) + c44(2ctt + c44) 
x~sb~bz+_~bl(cn +C12)C41+ClC~4- (3 .5 )  

bl=(cli-ca2-2c44) 

bz = (en + 2c12 + c44) • 

As (cos 2 a j (q) )=3 we obtain by averaging the nume- 
rator and the denominator separately in equation (3.4) 

3 _1_ 
=_j~ 3 (3.6) 

= o < -  . V~)s 

Let the effective sound velocity ¢ be given by 

1 3 1 

c < 
(3.7) 

From equations (3.5), (3.6) and (3.7) we finally obtain. 

c = (Q. S)-  ~/2 

The one-phonon coherent cross section in the high- 
temperature limit is 

a -  NIF(Q)IZ Q2knT ~ c°sZ 2 as(q) (3.8) 
m s=z oo~,s 

where N is the number of unit cells in the crystal, 
F(Q) the structure factor, and as(q) the angle between 
the direction of polarization of the mode (q,j) and 
the scattering vector Q given by 

Q=, t :+q .  

Using relations (3.4) and (3.8) we obtain 

NIF(Q)I 2 l 
o -  keTS,l - z  

oc q 

where vc is the volume of the unit cell. 
By integrating this scattering cross section over the 

scattering surface the total TDS for a specific scat- 
tering angle can be obtained. 

The TDS of interest is the peaked contribution under 
the elastic peaks and this originates from a limited 
region in the Brillouin zone of the particular reciprocal- 
lattice point. The contributions from other parts of 
the scattering surface only give rise to a slowly varying 
background. Therefore we only perform the integration 
over that part of the scattering surface which lies within 
the first Brillouin zone. A computer program was writ- 
ten to calculate the relative TDS from this model for 
the double-axis and the triple-axis cases. The observed 
base width of the double-axis peaks was divided into 
20 steps and the energy distribution of the TDS was 

calculated for each step (Fig. 2). In the double-axis 
mode, this energy distribution is integrated to give 
the TDS contribution for each step. Since we are only 
interested in the peaked TDS contribution, the constant 
contribution, defined as the TDS value at peak edges, 
was treated as background and subtracted to give the 
net TDS contribution. The total TDS correction for 
the peak was taken to be the sum of these 20 contri- 
butions. 

4 .  R e s u l t s  a n d  d i s c u s s i o n  

The double-axis neutron diffraction pattern of KC1 
is shown in Fig. 3. In this pattern the background goes 
up with angle indicating the presence of large incohe- 
rent inelastic scattering. This follows from the fact 
that the one-phonon incoherent scattering cross section 
goes up as sin 2 0/22 . exp ( - 2 B  sin 2 0]22) whereas the 
incoherent elastic scattering goes down as exp ( -  
2B sin 2 0/22). The rising background includes the in- 
coherent inelastic scattering and the coherent inelastic 
scattering, which, outside the region of Bragg peaks, 
can be treated like incoherent inelastic scattering for 
powder samples (Beg & Ross, 1968; Roy & Brockhouse, 
1970; Gompf, Lau, Reichardt & Salgado, 1972). The 
presence of large inelastic scattering suggests a sizable 
TDS under the Bragg peaks. 

The average B value for KC1, without TDS cor- 
rection obtained from the double-axis pattern is 
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3. Double-axis neutron diffraction pattern of KC1 powder. 
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Fig. 4. Triple-axis neutron diffraction pattern of KCI powder. 
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(1.73 +0.21)A 2. Comparing with the MGssbauer re- 
sults (Butt & O'Connor, 1967) where the TDS correc- 
tion is negligible, we estimate a sharply increasing (3 
to 14 %) TDS contribution to the Bragg peaks over the 
observed angular range. 

The experiment was repeated in the triple-axis mode 
with a 2.5 meV energy resolution. The diffraction pat- 
tern thus obtained (Fig. 4) differs markedly from the 
double-axis pattern. In contrast to the double-axis pat- 
tern the background is decreasing with angle indicating 
a considerably reduced inelastic contribution. In this 
ease the peaks are also better resolved. The B value 
obtained in the triple-axis case is (2.17+0.15)A 2, 
which agrees well with the TDS corrected values of 
other workers listed in Table 1. 

Theory given in § 3 was used to calculate the relative 
TDS contamination under the peaks in the double-axis 
and triple-axis diffraction patterns. Results for 420 
peaks are shown in Fig. 5. Fig. 6 gives the calculated 
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Fig. 5. Angular distribution of the relative TDS intensity under 
the Bragg peak is shown for the 420 reflexion of KCI. The 
observed base width in the double-axis case is 4.2 ° and in the 
triple-axis case is 2.3 ° . 

TDS correction as a function of sin 0/2 for the double- 
axis mode, and the triple-axis work with energy re- 
solution 2-5 meV (present experiment) as well as with 
a finer triple-axis resolution.of 0.86 meV. In our triple- 
axis experiment the TDS is reduced by a factor of 
two for the peak at the lowest angle and up to a factor 
of six for the higher-angle peaks. Thus the TDS cor- 
rection varies slowly from 11 to 3 % over the range of 
observation, and the error in the B value due to TDS 
is much smaller than the total experimental error and 
can be neglected. The experiment could not be per- 
formed with a better resolution because we did not 
have suitable monochromator and analyser crystals with 
smaller lattice constants for these experiments. 

5. Conclusions 

Using the triple-axis neutron spectrometer the dif- 
fraction patterns have been obtained for KC1 powder, 
in both the double-axis and the triple-axis modes. It 
is shown that in the triple-axis mode the TDS under 
the Bragg peaks is reduced to an extent that it can be 
neglected. The value of B thus obtained agrees well 
with TDS corrected results of other authors. Theore- 
tical calculations are also presented which calculate 
the relative TDS correction for the two cases. The ex- 
perimental results are supported by the results from 
these calculations. 

It is a pleasure to thank Mr Ahmed Ali for his 
skilful technical assistance in operating the spectro- 
meter. One of us (S.R.) is grateful to IAEA, AB Atom- 
energi, Sweden and Pakistan Atomic Energy Commis- 
sion for financial support during his stay at PINS- 
TECH. 

APPENDIX 

Derivation of the scattering surfaces for neutron 
scattering in the powder case 

The basic equations for one phonon inelastic scattering 
are 

K 1 - K 2 = / : +  q (1) 

Table 1. Debye-Waller coefficient (B) of  KCI 

No. Method Temperature (°K) B~(A ~) Bc~(A 2) 
1 MGssbauer SC 290 2-19" 
2 X-ray SC 290 1"885t 
3 X-ray P 300 2.08 2'06 
4 X-ray SC- 298 2"15 2.15 
5 Neutron P 295 2.00 2.08 
6 Neutron SC 295 2.175 2.165 
7 Neutron P 300 2.17* 
8 Theoretical 293 1.78 1.85 
9 Theoretical 295 1.929 1.995 

10 Theoretical 290 1.91 1.73 

Reference 
Butt & O'Connor (1967) 
James & Brindley (1928) 
Patomaki & Linkoaho (1968) 
Jayalakshmi & Viswamitra (1970) 
Taylor & Willis (1973) 
Cooper & Rouse (1973) 
Present work 
Copley et al. (1969) 
Reid & Smith (1970) 
Groenewegen & Huiszoon (1972) 

* Average value for K and CI ions. 
t Value obtained by Nilsson (1957) after TDS correction to X-ray data of James & Brindley (1928). 

Note: (i) The values quoted for Copley et al. have been obtained from their errata supplied with the reprint. 
(ii) SC: Single Crystal: P Powder. 
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h2K 2 hZK 2 

2m 2m 
- + hog(q) (2) 

where we have used the same notation as earlier. 
To find the q value which satisfies the above equa- 

tions we assume that q ~ z ;  a~(q)=cq where c is the 
isotropic sound velocity of the material. 

Setting 
2m C=-fic 

we obtain from equation (2) 

2 2 K1-K2  = +_ Cq. (3) 

A coordinate system in the scattering plane of the 
reciprocal lattice is introduced with the x axis along 
the direction of ~, and we set 

x=(Xo,0); q=(x,y) .  (4) 

For the double-axis case the wave vector of the in- 
coming neutrons, K1, is fixed and the wave vector of 
the outgoing neutrons, K2, is fixed in direction but not 
in magnitude. This gives 

K1 = (K~x, K~y) (5) 

K2 = [K2x(1 + t),K2y(1 + t ) ] .  (6) 

Let the magnitudes of K~, and K2 be K and K(1 + t) 
respectively. By putting equations (4), (5) and (6) into 
equations (1) and (3) we obtain 

K , x -  K2=(1 + t) = Xo + x (7) 

K , , -  K2,(1 + t ) = y  (8) 

K 2 -  K2(1 + 02= + Cq. (9) 

Equations (7) and (8) give 

g l x  - X 0 ~ X g 2 x  
. . . . . . .  (10) 

Kly - y  K2y 

and equations (8) and (9) give 

where 

K2[ 
C 1 - ,  K2, , .  = +q  

q = (x2 +yZ)- 1/z. 

01) 

The scattering surface is the locus of the solution 
to equations (10) and (11). In the powder case, we 
have to rotate the K1,K2 configuration rigidly around 
the origin to obtain an average over all directions. Let 
the angle of rotation be ~0 (Fig. 1). For the scattering 
angle 20 and an angle of rotation ~0 we obtain, as- 
suming ~0 < 0, as we are only interested in small q values, 

Klx = K(sin 0-~0 cos 0) (12) 

K2x=-K(s in  0 +  ~0 cos 0) (13) 

K1y = K(cos 0 + q~ sin 0) (14) 

Kzy = K(cos 0-~o sin 0).  (15) 

Inserting the above expressions in equation (11) we 
obtain assuming ~0 tan 0 <  1, 

K2[( )] C 1 -  l + 2 t a n 0 -  y ( l+~0 tan0)  2 
Kcos 0 = + q" (16) 

As q ~ l , y < K  the term proportional to y~o/K is of 
second order and we can neglect it. We finally obtain 

K 2 (  2y ) 
C K c o s O  -4q~ tan0  = + q .  (17) 

Using equations (10) and (12) to (15) we get: 

where 

x cos O+y sin O-A cos 0 (18) 
~0= x0sin O - y c o s O + x s i n O  

A = 2K sin 0 -  x0. (19) 

At the exact Bragg position A = 0 and we will assume 
d <Xo. 

By squaring both sides of equation (17) and putting 
the above value of ¢ we get: 

16 C 2 ) C 2 32A 16A 2 
Xo 2 h':~ x 2_ K ~ y 2 -  x ~ - X +  x° o - 0 ,  (20) 
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Fig. 6. Relative TDS contribution to the elastic peaks as a 
function of (sin 0/2) in: (a) Double-axis mode; (b) Triple- 
axis mode with energy resolution in this experiment (2-5 
meV); (c) Triple-axis mode with energy resolution of 0.86 
meV. 
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where we have used 2Ks inO~xo  and 
x ,y~xo .  

By setting 

d -  C2xZ° 
16K 4 

equation (20) can be written 

assumed 

,d( 
d x 1 d- _y2 _ A - - - Z - -  1 - d  - 0  (21) 

which is the equation of the scattering surface in a 
plane. The scattering surface is cylindrically symmetri- 
cal around the reciprocal-lattice vector z, and by using 
a cylindrical coordinate system (z,r,O), with the z 
axis directed along z we finally obtain the following 
equation for the scattering surface in reciprocal space 

d z . . . . . . . . .  0 .  (22) 1 d - r 2 -  1 - d  
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Coherent-Scattering Amplitude of 243Am and 244Cm* 

BY M. H. MUELLER, G . H .  LANDER AND J. F. REDDY 

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. 

(Received 18 February 1974; accepted 19 April 1974) 

Neutron diffraction experiments have been completed on 243AMO2 and 244Cm203. The coherent-scattering 
amplitude of 243Am, relative to a value of 0-58 x 10 -12 for oxygen, is 0.76 (1) × 10 -12 cm. The value for 
curium is ,,-0.7 x 10 -12 cm, which cannot be determined accurately in this experiment because both 
C-type (cubic, a=  11"0/~) and A-type (hexagonal, isostructural with La203) Cm203 are present in the 
sample. Some of the difficulties in performing neutron diffraction experiments on these radioactive 
isotopes, which exhibit self-heating and spontaneous fission, are discussed briefly. 

Introduction 

Interest in the transuranium elements and their com- 
pounds has been almost totally confined, in the past, 
to nuclear physicists and chemists. Certainly, the struc- 
tural chemistry of actinide compounds has been pursued 
vigorously, often on microgram quantities, since the 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission. 

early days of the Manhat tan Project (Seaborg, 1958). 
The increasing availability of transuranium isotopes 
has meant, however, that experimentalists can now 
think in terms of gram rather than microgram quan- 
tities, and, over the last few years at Argonne National 
Laboratory (ANL) the electronic structure of a number 
of actinide compounds has been investigated with a 
variety of experimental techniques. Neutron diffraction 
plays an important role in these studies for two major 
reasons. First, the ordered arrangement of magnetic 
moments (many actinide compounds are magnetic at 


